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Abstract—The solution methodology developed in the preceding paper has been amplified, adapted, and
then employed to solve the conjugate phase change—convection problem which results when a coolant
passes through a tube situated in a liquid phase-change medium. The axial temperature increase experienced
by the coolant gives rise to two-dimensional freezing about the tube. In the first part of the paper, the
procedures used to incorporate the coolant energy equation and the various boundary conditions into the
solution methodology are described. A closed-form analytical solution is then derived to start the main
numerical solutions. The numerical work was focused on gaseous coolants because they give rise to much
larger axial variations than do liquid coolants. Results were obtained for the thickness of the frozen layer, the
coolant bulk temperature, the tube wall temperature, and the energy extracted from the phase-change
medium, with the coolant Stanton number, the Biot number, and the solid-phase Stefan numbers as
parameters. Among the parameters, the results were not very sensitive to the Stanton and Stefan numbers but
were quite responsive to the Biot number.
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NOMENCLATURE

Biot number, hr,/k;

specific heat;

energy extracted from phase-change
medium;

height of containment vessel;

heat transfer coefficient for coolant flow;

thermal conductivity;
Stanton number, h/i(pc,).;
Stefan number, ¢ (T* —T)/4;
radial coordinate;

radius of tube wall;
temperature;;

coolant bulk temperature;
coolant inlet temperature;
tube wall temperature;
fusion temperature;

time;

mean velocity of coolant;
axial coordinate.

Greek symbols

thermal diffusivity;

dimensionless frozen layer thickness, é/r,,;

frozen layer thickness;

transformed coordinate, (r —r,)/d;
dimensionless temperature
(T—THAT;—T*);

latent heat of fusion;

dimensionless coordinate, z/r,,;
density;

independent variable, equation (18);
dimensionless time (at/r2) Ste;

coolant heat capacity parameter, equation

(3b).

Subscript
c, properties of coolant;
no subscript denotes properties of frozen
material.

Superscript
T, at time t;
no superscript denotes time (7 +61).

INTRODUCTION

IN THE immediately preceding paper [1] in this issue of
the journal, a methodology was set forth for the
numerical solution of transient two-dimensional dif-
fusion problems in which one of the boundaries of the
diffusion region moves as time passes. A special focus
of the solution method is the accommodation of moving
boundaries which do not lie along coordinate lines
(e.g. curved boundaries). The moving boundary is
immobilized by a coordinate transformation, but the
transformed coordinates are, in general, not orthog-
onal. A control volume approach was used as the
basis for the derivation of the finite-difference equa-
tions which express energy conservation for the trans-
formed diffusion region.

The details of the discretization procedure leading
to the difference equations are set forthin [1], asis a
step-by-step prescription of the scheme for solving the
difference equations. In addition, the discretization of
an illustrative energy-balance equation at the moving
interface was also described along with the role played
by that equation in the solution scheme for the
diffusion region. The development of the solution
methodology was carried forward in [1] as far as was
consistent with a general treatment of the two-
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FIG. 1. Schematic diagram of freezing on a coolant-carrying
tube.

dimensional moving boundary problem.

This paper has two objectives. The first is to
illuminate and clarify the methodology of [1] by
employing it to solve a specific physical problem. In
this regard, the main issues to be dealt with are the
integration of specific boundary conditions into the
solution methodology and the use of a special small-
time solution to start the main numerical solution.
Since the specific physical problem to be considered is
a conjugate problem, involving both heat conduction
in a freezing region and convective cooling, the
coupling of the conduction and convection provides a
key boundary condition.

The second and, perhaps, the main focus of the
paper is the solution and presentation of results for a
physical problem of practical interest. The physical
situation to be studied is pictured schematically in Fig.
1. As shown there, a circular tube passes through a
containment vessel in which there is a liquid phase-
change medium at its fusion temperature T*. A
coolant whose inlet temperature is T; flows through
the tube. For the condition that T; < T*, freezing
occurs on the outside of the tube and, with the passage
of time, the frozen layer grows thicker, so that Fig. 1
represents an instantaneous picture of the freezing
process. The upper and lower boundaries of the
containment vessel are adiabatic, as indicated in the
diagram.

The thickness § of the frozen layer pictured in Fig. 1
is shown to be varying along the length of the tube. A
primary factor in this variation is the axial temperature
increase experienced by the coolant as it flows through
the tube. This temperature rise is the result of heat
transfer to the coolant due to energy liberated by the
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freezing process and by the subcooling of the solid.
Other possible contributing factors to the axial thick-
ness variation are axial heat conduction in the solid
and heat storage in the coolant.

The freezing process envisioned here is one in which
the containment vessel is initially filled with a liquid
phase-change material at its fusion temperature T*.
No coolant is flowing, and any coolant fluid situated
within the tube is also at T*. Then, at time ¢ = 0, the
coolant flow is initiated and maintained. The entering
coolant temperature T is also maintained at a steady
value that is less than T*, so that freezing is initiated
and continues as long as coolant is supplied to the
tube.

From the numerical solutions of the problem,
results have been obtained for several quantities of
technical interest. These include the timewise evol-
ution of the distribution of the frozen layer thickness
along the length of the tube and the axial distributions
of the fluid bulk and tube wall temperatures, also as a
function of time. From the standpoint of thermal
energy storage, the amount of energy transferred from
the phase-change medium to the coolant during
various periods of time is relevant information and is
included among the results presented here.

Problems related to that described in the foregoing
paragraphs have been considered in [2] and [3]. In
both of the cited investigations, various assumptions
were introduced, with the result that the problems
actually solved were significantly different (and sim-
pler) than that considered here.

ADAPTATION OF THE SOLUTION METHODOLOGY

As noted in the Introduction, the difference equa-
tions for the frozen region and the scheme for their
solution, as set forth in [1], are directly applicable here
and need not be repeated. The first task that is specific
to the present analysis is to couple the energy equation
for the coolant to the heat transfer processes in the
adjacent frozen material. Subsequent portions of the
analysis will deal with the moving boundary (i.e. the
freezing front) and with the adiabatic upper and lower
boundaries of the containment vessel.

Coolant energy balance and associated convective bound-
ary condition

If the subscript c is used to identify the thermophysi-
cal properties of the coolant, then an instantaneous
energy balance for a control volume of axial length dz
which spans the cross-section of the tube yields

h2nr (T, —T,) = (pc,). mrd (8T, /0t +idT,/0z) (1)

in which T, and T,, denote the coolant bulk and wall
temperatures, respectively, i is the mean velocity of the
coolant, and h is the heat transfer coefficient for the
coolant flow. Note that both T, and T, are functions
both of the axial position z and time t. Equation (1)
states that the heat passing into the fluid from the tube
wall may cause both timewise and spatial variations of
T,.
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F1G. 2. Finite-difference grid adjacent to the coolant-solid
interface.

To nondimensionalize equation (1), it is convenient
to introduce the variables

E=z/r,, 0=(T-THAT;—T*), t=(u/r}) Ste (2)
and the dimensionless groups

St=hfi(pc,), Bi=hr,/k, Ste=c,(T*—T,)/’
(3a)

© = [(pc,)/pc,) (Ste/Bi) (3b)

where the properties without subscripts are those of
the frozen material. The Stanton number St reflects the
convective heat transfer capabilities of the coolant
(without reference to the solid), while the Biot number
Bi compares the capabilities of the coolant and the
solid. Both the Stefan number Ste and © are measures
of heat capacity, Ste for the solid and w for the coolant.
Care should be exercised not to confuse St and Ste.

In terms of the new variables, the energy balance (1)
becomes

20, — 0,) = w(06,/07) + (1/51)(06,/08).  (4)

At the tube wall (r = r,), in recognition of the fact
that the convective heat transfer to the coolant is
supplied by conduction in the frozen material

WT, —Ty) = (kOT/0r)a- 5
This equation is made dimensionless by introducing
n={(r—r.)o, A=, (6)

so that
Bi(0,,—6,) = (1/A)(06/0M)soia- M

Equations (4) and (7) are the differential forms of the
coolant energy equation and coolant-solid interface
energy balance. To facilitate their incorporation into
the numerical solution methodology of [1], finite-
difference forms will now be derived. For this purpose,
the finite-difference grid adjacent to the coolant-solid
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interface (i.e. the tube wall) is shown in Fig. 2. If
attention is focused on the P control volume for the
coolant and on the adjacent solid-phase control
volume, and if (06/01)44 is discretized as (6 —0,,)/1%,
then equation (7) can be rephrased as

0y —bpp = (0 —0,p)/(1 +ngBiA). (8)

Equation (4) is then applied to the P control volume
for the coolant, and (6,, — 6,p) is eliminated by employ-
ing equation (8). The resulting equation is then
integrated along ¢ from the upstream face to the
downstream face of the control volume, with 06,/0t
being regarded as spatially uniform within the control
volume. The respective values of 8, at £, and &, are
obtained by noting that the fluid enters the P control
volume with a bulk temperature 6,5 and leaves with a
bulk temperature 0,p.

The timewise discretization is fully implicit, with
(06,/01)p being discretized as (0, —0;),/0t. All other
time-dependent quantities appearing in the integrated
form of equation (4) are evaluated at time (t+67).
Furthermore, in keeping with the practice employed in
[1], quantities corresponding to time (z+dt1) are
without superscripts while those for time ¢ are
identified with a superscript.

When the operations described in the preceding two
paragraphs are carried out, there results

apbyp = agfys+agfe+B 9)
where
as=1/2S5t, ag=08¢/(1+nBiA), B=wdbp/261
(10a)
ap = ag+ag+wd&/26t (10b)

and 8¢ = &, —¢,. Equation (9) is the finite-difference
equation from which the temporal and spatial distri-
bution of the coolant bulk temperature is to be
determined. It also serves to link the temperature field
in the coolant to that in the adjacent frozen material.
Note that the solid-phase grid-point temperature 6
appears in equation (9), but not 8,, (which is not a grid
point).

Equation (9) is readily incorporated into the finite-
difference scheme for the frozen region as set forth in
[1]. That scheme, which dealt with an arbitrary
control volume within the frozen material, is easily
adapted to the boundary control volume which, as
pictured in Fig. 2, surrounds the grid point E (tempera-
ture 6g).

In this regard, it may be noted that the left-hand face
of the boundary control volume is stationary, and its
transformed radial coordinate is # = 0. Furthermore,
on that face, the quanties 8, ¥ and R, defined by
equations (10) and (13) of [1], are equal to zero, one,
and one, respectively, so that Q@ = —(1/A) (36/6n) and
A = 0 from equations (24) and (25) of [1]. Then, by
taking note of equation (7) of this paper,  can be set
equal to Bi(8,,—8,,), and with equaticn (8)

Q = Bi(,,—0:)/(1 +nBiA). (11)
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If attention is then turned to equation (27) of [ 1],
which represents the fully implicit discretized form of
the energy balance for a control volume in the frozen
material, the following modifications are made for the
boundary control volume. First, the subscript P is
changed to E for consistency with the notation of the
preceding paragraphs. Then, Qg is set equal to the Q of
equation (11) and Ag; is set equal to zero. These
modifications are all that is necessary to adapt the
formulation of [1] to the column of solid-phase control
volumes that are situated adjacent to the coolant-
carrying tube.

With this, the coolant energy equation and the
convection condition at the inner boundary of the
solidified region can now be regarded as having been
incorporated into the numerical scheme of [1].

Freezing front and adiabatic boundaries

From the problem statement set forth in the In-
troduction and illustrated in Fig. I, it is seen that the
temperature of the liquid phase-change medium is
uniform and equal to the fusion temperature T*.
Therefore, for these conditions, buoyancy forces are
absent, and there is no natural convection in the liquid.
This fact can be employed to modify the moving-
boundary energy balance that was described in [1]. In
particular, the last term on the respective right-hand
sides of equations (30)-(32) is deleted. If account is
taken of this modification of equation (32), the discre-
tized computational equation for determining the
dimensionless frozen layer thickness A(&, 1), equation
(33) of [1], remains unchanged. Furthermore, the
description of the solution methodology for A, which
follows equation (33), is also applicable without
modification.

It is also relevant to briefly discuss the column of
solid-phase control volumes that is positioned im-
mediately adjacent to the freezing front. For concrete-
ness, attention may be focused on a typical control
volume among these, for instance, one which sur-
rounds a point P. The right-hand face of such a control
volume is the freezing front, where n=1 and 8=0.
Correspondingly, from equations (24) and (25) of [ 1],
Q = —R(y/A) (é6/én) and A = 0. The derivative
(68/0n) was discretized as (0 — 6,)/(1 — n;). Since the
right-hand face was identified as S1 in [1]

Qg = R(/AWp/(1 ~ 1p), Agy = 0.

The Qg; and Ay, from equation (12) may be
introduced into the discretized control volume energy
equation, equation {27) of [ 1]. These modifications are
all that are required to specialize (27) to the column of
control volumes adjacent to the freezing front.

The upper and lower bounding surfaces of the
containment vessel are specified as being adiabatic (see
Fig. 1), that is, 6T/0z = 0. If use is made of the
transformation of ¢/0z into the &, 5 coordinates
(equation (8) of [1]), the adiabatic condition becomes

(12)

c0/c& = (n/ANCA/OEN0/dn), &E=0, H/r,. (13)
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Since the freezing front is an isotherm (T = T* =
constant) and since both the £ = 0 and & = H/r,,
surfaces are adiabatic, it follows that

0A/GE =0, (=0, H/r, (14)

since adiabatic and isothermal surfaces are perpendi-
cular. From equations (13) and (14), the adiabatic
condition reduces to

80/et =0, &=0, H/r,, (15)

Equation (15), in conjunction with equation (25) of
[1],yieldsT" = 0at¢ = Oand & = H/r,,. With this, the
discretized control volume energy balance, equation
(27) of [1], is readily adapted to the control volumes
adjacent to the upper and lower surfaces of the
containment vessel.

In addition to its role in simplifying the adiabatic
boundary condition, equation (14) also serves to
provide end conditions for the spline fits of A(¢) that
are employed in the numerical scheme [1].

At this point, all of the adaptations of the solution
methodology of [ 1] to the present problem have been
completed. Attention will now be turned to special
procedures needed to start the numerical solution.

SMALL-TIME STARTING SOLUTION

In transient problems which are initiated by a rapid
change in a boundary condition, as in the present
instance, it is extremely difficult to get accurate short-
time solutions. In addition, the grid deployment that
is appropriate at smali times may be quite different
from that which is optimal at larger times. For these
and other reasons, it is highly desirable, if possible, to
utilize an alternative solution at short times, and to
initiate the full-blown numerical solution subsequent
to the period of most rapid change, using the alter-
native solution as the source of the starting values.

For the present problem, it is possible to obtain a
closed-form analytical solution which can serve as a
small-time solution. At small times, the thickness of the
frozen layer is small compared with the tube radius, so
that the layer can be regarded as plane. Furthermore,
both the sensible heat storage and the axial conduction
in the frozen layer are negligible. Under these con-
ditions, the radial temperature distribution in the
frozen layer is linear, with a slope

aT/ér = (T*—T,)/5. (16)

Furthermore, for the aforementioned model

WT, —T,) = k(8T /ér) = pi@d/ét).  (17)

Equations (16) and (17), together with the coolant
energy balance, equation (1), constitute the governing
equations for the small-time solution. These are sup-
plemented by the initial condition, T = T*, and the
coolant inlet condition, T = T,.

The mathematical operations involved in the attain-
ment of the closed-form solution for the just-described
problem are similar to those set forth in [4] for freezing
adjacent to a plane wall cooled by an internal forced
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convection flow. Since the solution procedure is avail-
able in [4], it will not be described here. Rather, only
the final results for the three quantities of main interest,
A, 8, and 0,,, will be given.

For a compact presentation, it is convenient to
define a new independent variable ¢

g=1— (wSt) >0 (18)

so that ¢ and ¢ are the independent variables on which
A, 0, and 8, depend. Then, the solution gives

A+(In A)/Bi= —(2St/Bi)¢ + Ay +(In Ag)/Bi (19)
where
Ag = ~(1/Bi)+[(1/Bi)* +20]'". (20)

The procedure for the evaluation of A is first to select ¢
and ¢, and then to calculate o from equation (18). With
o as input, A, is computed from equation (20). Then,
with Ay and the selected value of &, A is determined
from equation (19). Once Ay and A have been found, 8,
and 6, follow from

0, = A[1 + (1/BiAg)] [(1/Bi)* + 261712 (21)
6, = 6,/[1 + (1/BiA)]. (22)

In employing the short-time solution, equations
(18)—(22), to provide starting values for the full-blown
numerical solution, care was taken to ensure that it was
applied for times for which it is actually valid. To verify
the proper use of the short-time solution, the A values
from the short-time and numerical solutions were
compared at all times subsequent to the initiation of
the latter. If the two solutions were in agreement to
within 0.1% for times up to twice the starting time of
the numerical solution, it was judged that the small-
time solution had been evaluated within its range of
validity in providing the starting values for the numeri-
cal computations.

RESULTS AND DISCUSSION

Parameter and grid considerations

From an examination of the governing equations, it
can be seen that there are four dimensionless para-
meters whose values have to be specified prior to the
initiation of the numerical solutions. These include the
Stanton number St, the Biot number Bi, the Stefan
number Ste, and the coolant heat capacity parameter
@. What with so many parameters and also taking
cognizance of the fact that the computations are quite
time consuming, care must be taken in selecting the
cases to be studied. In addition, for each case, thereisa
considerable amount of information to be presented,
encompassing the timewise variation of the heat
extracted from the phase-change medium and the time
and space variations of the frozen layer thickness, the
coolant bulk temperature, and the tube wall tempera-
ture. Thus, journal space limitations restrict the num-
ber of cases for which results can be presented.

Another factor in the selection of the cases to be
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computed is the desire to use the methodology and
solution scheme for problems which merit such power-
ful tools—for problems which are truly two-
dimensional (i.e. significant variations of A, 6, and @,
with ). The illustrative cases solved in [4] de-
monstrated that the ¢ variations were much larger
when the coolant is a turbulent gas flow than when it is
a turbulent liquid flow (indeed, the liquid flows gave
results that were nearly independent of &). Con-
sequently, attention will be focused here on parameter
values that are reflective of turbulent gas flows.

For gas flows, intuition suggests that the heat
capacity will play a negligible role, i.e. the w parameter
is sufficiently small so as not to affect the results. This
expectation was verified by the numerical results of
[4]. Therefore, for the present computations, @ will be
set equal to zero. The values selected for the other
parameters will become evident during the graphical
presentation of results.

The computations were performed with 1400 grid
points arranged in a 140 x 10 pattern, respectively in
the £ and 5 coordinate directions. Only ten points were
needed in the n direction because the 8 versus 5
profiles, which are nearly linear, are very well accom-
modated by a central difference discretization over a
uniformly deployed set of grid points, as was the case in
the present problem. A relatively large number of grid
points in the £ direction was required because of the
large span of the ¢ coordinate (i.e. H/r,, is several
hundred times larger than &/r,). With regard to the
time variable 1, it is open ended since the freezing can
continue indefinitely. The computations were carried
through for r values up to 0.4 using about 500 time
steps, which gave a layer of thickness 6 ~0.6r,, at the
termination of the computations.

Frozen layer thickness.

Representative results for the thickness of the frozen
layer are shown in Fig. 3. In the figure, the thickness is
plotted as a function of the axial coordinate at a
succession of times. The solid lines portray the results
from the numerical solutions, while the dashed lines
are for the small-time solution. The latter has, in fact,
been extended to large times in order to examine how
well it performs outside its primary range of
applicability.

The figure shows that the thickness of the frozen
layer decreases in the axial direction. This behavior is
directly attributable to the temperature rise of the
coolant as it passes along the length of the tube. The
higher downstream temperatures make for a smaller
fusion-to-coolant temperature difference, which re-
sults in reduced heat transfer across the frozen layer
and a correspondingly reduced rate of freezing.

While the changes in layer thickness between the
inlet and exit cross sections are not insignificant, the
actual slope of the solid-liquid interface is very
small—1/100 of that shown in the figure. This obser-
vation suggests that axial variations are very small
compared with radial variations, so that axial con-
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FiG. 3. Representative results for the thickness of the frozen layer.

duction is, in all likelihood, negligible compared with
radial conduction. When axial conduction is negli-
gible, the solution at any station z/r,, is not affected by
events at downstream stations and by the height H of
the containment vessel. It is for this reason that little
was said heretofore about the specification of the
dimensionless height H/r,, of the containment vessel.
For the calculations, H/r, was taken to be 100.
However, it is believed that the results are applicable

0.7
St =0.003, Bi=5

for any H/r,,.

As expected, the thickness of the layer grows
continuously with time. In addition, the slope of the
solid-liquid interface is larger at larger times.

The numerical and small-time solutions merge at
small values of time. On the other hand, the deviations
between the two sets of results increase as the layer
grows thicker, with the small-time solution yielding a
greater layer thickness. By examining the resuits for

————Ste=0

FiG. 4. Effect of Stefan number on the thickness of the frozen layer.
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FiG. 5. Effect of Stanton number on the thickness of the frozen layer.

other cases in addition to those of Fig. 3, it may be
concluded that the errors in the small-time solution are
keyed to the magnitude of the layer thickness and are
little affected by the assigned values of the parameters.

As afinal observation with regard to Fig. 3,it may be
noted that the zero slope conditionatz = 0andz = H
is not well represented. This is because this condition is
actually in force only at the two end points, whereas
near these points the slope is not zero. The scale of the
figure is such that the region of zero slope is too small
to be portrayed.

The results of Fig. 3 were for small values of the
Stefan number, i.e. Ste = 0. The effect of the Stefan
number is explored in Fig. 4, where curves of frozen
layer thickness are plotted for Ste = 0 and Ste = 1 for
the same Stanton number and Biot number values as
in Fig. 3. From this figure, it is seen that all of the
qualitative trends that were identified for Ste=0 are
also applicable for Ste = 1. Indeed, the two sets of
curves are very nearly parallel, with those for Ste = 0
lying above those for Ste = 1. This arrangement is
altogether reasonable, since higher Ste denotes in-
creasing liberation of sensible heat from the solid,
which brings about a greater rise of coolant tempera-
ture and a decrease in the fusion-to-coolant tempera-
ture difference.

The effect of Stefan number is modest, as witnessed
by the fact that the curves for Ste = 0 lie only about
11%, above those for Ste = 1. Furthermore, Ste = 1is
actually a large value when viewed from the appli-
cations standpoint. In view of this, the subsequent
graphs in this series will be characterized by a fixed
value of Ste = 0.

The effect of the Stanton number St is illustrated in

Fig. 5. The Biot number is the same as in the preceding
figures, and Ste = 0. As it enters the present analysis,
the magnitude of the Stanton number controls the
axial temperature rise of the coolant fluid. Since
smaller values of #t{pc ), promote larger rises in coolant
temperature, it follows from equation (3) that larger St
should yield larger downstream coolant temperatures
and smaller values of the fusion-to-coolant tempera-
ture difference. Therefore, it can be expected that the
decrease of § with z will be greater at larger values of St.
This expectation is verified by Fig. 5, where the slopes
ofthe & vs z curves for St = 0.005 are greater than those
for the St = 0.003 curves.

The differences in the slopes are, however, rather
modest. In addition, it should be noted that the range
of St thatis employed in the figure is quite large. In this
regard, it may be recalled that a well-accepted cor-
relation for turbulent pipe flows indicates that St ~
Re™ %2 Thus, a very large variation of Reynolds
number would be required to span between the two St
values employed in the figure. The Stanton number is
more sensitive to variations in the Prandtl number
than to variations in the Reynolds number. However,
for gases, the Prandtl number is confined to a narrow
range. There are substantial variations among the
Prandtl numbers of candidate liquid coolants, but the
corresponding Bi values are quite different from those
of Fig. 5, so that the results of the figure do not apply to
liquids.

Attention will now be turned to the effect of the Biot
number, and Fig. 6 has been prepared in this con-
nection. The Biot number can be regarded as a
measure of the convective heat transfer coefficient for
the coolant flow (for a fixed conductivity of the frozen
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Fic. 6. Effect of Biot number on the thickness of the frozen layer.

material). A large Biot number encourages heat trans-
fer from the solid to the coolant and promotes a high
rate of freczing, while 2 low Biot number has the
opposite effect. These assertions are corroborated by
the results of Fig. 6, where a substantial response of § 10
Bi is in evidence {up 1o about a factor of two). On 2
percentage basis, § is more responsive to Bi at small
times than at Jarge times. This is because at small times,
the frozen layer is thin and the convective heat transfer
coefficient plays a larger role in determining the overall
thermal resistance than it does at larger times, when
the layer is thicker and more resistant,

Coolant bulk and wall temperatures
Axial distributions of the coolant bulk and tube wall

temperatures al 8 succession of times are presented in
Figs. 7-10. With regard to parameter specification,
Fig. 7 is the counterpart of Fig. 3, Fig. 8 is the
counterpart of Fig. 4, etc. Each figure contains two
panels, with the results for the wall and bulk tempera-
tures respectively presented in the left-hand and right-
hand panels. The temperatures are plotted in dimen-
sionless form, {T,, — T*WT,; — T*}{or the wall tem-
perature and (T, — T*)(T; — T*) for the bulk
temperature.

Attention will first be turned to Fig. 7 with a view to
identifying the trends of the temperature variation
with respect 1o axial position and time. In the right-
hand panel of the figure, where the bulk temperature
results are plotted, all curves originate at an ordinate of

S+=0,003, Bi=5
Sre=0

s NUMERICAL

e e e SMALL - TIME MODEL

H H i i H

20 40 &80
271,

80 100

Fic. 7. Representative tesults for the coolant bulk and tube wall temperatures.
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Fic. 8. Effect of Stefan number on the coolant bulk and tube wall temperatures.
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FiG. 9. Effect of Stanton number on the coolant bulk and tube wall temperatures,

FiG. 10. Effect of Biot number on the coolant butk and tube wall temperatures.
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unity and slope downward to the right. This behavior is
consistent with an entering bulk temperature equal to
T, (constant for all times) and an increase of the bulk
temperature along the length of the tube. The reason
for the drop-off of the curves as the bulk temperature
increases is the decrease of the fusion-to-bulk tempera-
ture difference which appears in the numerator of the
ordinate variable.

At any fixed time, the change in the bulk tempera-
ture between inlet and outlet is proportional to the rate
at which heat flows from the tube wall into the coolant
(the fluid heat capacity is negligible for gases). From
the right-hand panel of Fig. 7, it is seen that the tube-
to-fluid heat transfer rate is largest at small times and
decreases as time increases. Also, at any fixed time, the
greater slope of the bulk temperature curve at small z
indicates higher heat transfer rates in that region.

The dimensionless wall temperature distributions
(left-hand panel) lie well below the corresponding
dimensionless bulk temperature distributions, es-
pecially at small times. This means that (T* — T} <
(T* — Ty)orthat T,, > T,,asis necessary since T* >
T, The decreasing spread between corresponding T,
and T, curves that occurs as time increases is due to the
decreased rate of heat transfer that accompanies the
thickening of the frozen layer. The wall temperature
distributions, in common with the bulk temperature
distributions, slope downward to the right, indicating
that the wall temperature increases along the length of
the tube.

Figure 7 contains results from both the numerical
solution and the short-time model. The two sets of
results merge at small times but deviate at larger times.
In particular, the short-time solution underestimates
the heat transfer rate to an extent which grows larger
with time ; in addition, the wall temperatures predicted
by the small-time model tend to be low.

The effect of Stefan number on the wall and bulk
temperature distributions is illustrated in Fig. 8, where
results for Ste = 0 and Ste = | are plotted. All of the
qualitative trends already enumerated for Sre = 0
carry over for Ste = 1. Since the dimensionless bulk
temperature curves for Ste = 1 lie below those for Ste
= 0, the heat transfer rates for the former are greater
than those for the latter, with the deviations increasing
with time. The higher transfer rates for Ste = 1 may be
attributed to the energy liberated by the subcooling of
the solidified material, which supplements the energy
liberated by the freezing process.

Examination of the left-hand panel of Fig. 8 shows
that the fusion-to-wall temperature differences for Ste
= 1 are smaller than those for Ste = 0, which means
that the wall temperatures are higher for the former
than for the latter. This finding is consistent with the
fact that the thickness of the frozen layer is smaller for
Ste = 1 than for Ste = 0 (Fig. 4).

Figure 9 illustrates the effects of the Stanton number
on the heat transfer. As noted earlier, the major role of
the Stanton number in the present problem is to
control the extent of the bulk temperature rise along
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the length of the tube. From the right-hand diagram of
the figure, the response of the bulk temperature to the
Stanton number is strongly in evidence, especially at
small values of time. It is seen that the higher the
Stanton number, the greater is the bulk temperature
rise. However, this does not necessarily mean that the
wall-to-fluid heat transfer rate is greater at higher
Stanton numbers. In this regard, it may be noted that
the heat transfer rate is proportional to the product of
the coolant mass flow and the bulk temperature rise.
Since an increase in Stanton number may be caused by
a diminished coolant flow, the heat transfer rates may
actually decrease with increasing Stanton number.

The wall temperature distributions (left-hand panel
of Fig. 9) display Stanton-number-related trends that
are similar to those for the bulk temperature. As the
Stanton number increases, greater increases in the wall
temperature along the length of the tube are in
evidence. Note that at any given time, the wall
temperature at z = 0 is independent of the Stanton
number when the Biot number is fixed. This is because
the inlet bulk temperature is fixed at T, and the Biot
number controls the wall-to-bulk temperature differ-
ence at each instance of time.

The Biot-number-related effects on the temperature
distributions are displayed in Fig. 10. Larger values of
Biot number promote higher rates of heat transfer so
that, at first thought, it might be expected that the
bulk temperature curves for Bi = 5 would show a
larger axial variation than those for Bi = 2. As
indicated in the right-hand panel of Fig. 10, the
opposite relationship prevails. The reason for this
behavior is that the higher values of Bi imply a larger
convective heat transfer coefficient which, in turn,
implies a higher coolant velocity. It is this higher
coolant velocity which is responsible for the smaller
axial bulk temperature changes for Bi = 5 relative to
those for Bi = 2.

Another effect of increasing Biot number is to
decrease the wall-to-bulk temperature difference, with
a corresponding increase in the difference between the
fusion and wall temperatures. This expectation is
corroborated by the results shown in the left-hand
panel of Fig. 10, where the curves for Bi = 5 are seen to
lie substantially above those for Bi = 2.

Energy extracted

With regard to thermal storage applications, the
amount of energy E extracted from the phase-change
medium during the time interval from ¢ = Otot = tis
of practical relevance. The dimensionless group
E/plr} was evaluated from the numerical solutions
and is plotted as a function of the dimensionless time
variable 7 in Figs. 11 and 12. In addition, the same
group was evaluated from the small-time model for
those cases where Ste = 0 (recall that sensible heat
effects in the frozen layer are not accounted in the
model). In computing E for the small-time model, the
temperature gradient given by equation (16) was
multiplied by the element of tube surface 2nr d:.
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FiG. 11. Effect of Stefan number on the energy extracted from the phase-change medium.

integrated from z = 0 to z = H, and then integrated
over time fromt = 0tot = ¢

The energy-extraction curves in both figures show a
common dependence on time. As expected, the
amount of energy extracted increases with time, but at
a lesser rate as time advances. Thus, the instantaneous
incremental contributions to the extracted energy
diminish with time.

Figure 11 displays the effects of Stefan number on
the extracted energy. The solid line in the figure
represents the results for Ste = 0 as determined from
the numerical solution. This is to be compared with the
uppermost dot-dashed curve (that labelled ‘total’)

parison shows that the extracted energy is greater at
higher Stefan numbers. However, taking account of
the fact that Ste = 1 is a relatively large Stefan number
and that the maximum deviation between the Ste = 0
and Ste = 1 curves is about 99/, the Stefan number
effect is not a major factor.

It is interesting to explore the manner in which the
Stefan number effect is manifested. For this purpose,
the latent heat and sensible heat contributions to the
extracted energy for Ste = 1 are plotted as dot-dashed
lines in Fig. 11. If account is taken of the fact that the
curve for Ste = 0 represents latent heat alone (there is
no contribution of sensible heat for Ste = 0), it can be

which represents the results for Ste = 1. The com- seen that the accounting of sensible heat effects, as
500F
L — — — SMALL-TIME
MODEL
400}
| ste=0
300+
IOL;
0 -
-
w2004 L
“sd -
- //#;’ _~"0005 2
oor
¢ e
- ’ ’,/”
o —”’ 1 1 1 t 1 L 1 J
0 0.1 0.2 0.3 0.4
T

Fi1G. 12. Effect of Stanton number and Biot number on the energy extracted from the phase-change medium.
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occurs automatically for Ste > 0, actually decreases
the latent heat contribution. This decrease is more
than compensated by the sensible heat contribution, so
that the net extracted energy increases modestly with
the Stefan number.

For Ste = 0, the short-time model predicts results
that are somewhat low compared with those of the
numerical solution. The deviations increase with time,
as is consistent with the timewise growth of the frozen
layer and the corresponding lessening validity of the
small-time model. At = 0.4 (the largest 7 value of the
figure), the predictions of the small-time model are
about ten percent below those of the numerical
solution.

The effects of Stanton number and Biot number
on the extracted energy are displayed in Fig. 12. The
figure shows that there is a modest decrease in the
extracted energy as the Stanton number increases at
fixed values of Bi and Ste. This decrease may be
attributed to the greater bulk temperature rises that
are brought about by decreases of coolant mass flow
(denominator of the Stanton number) and the con-
sequent decrease of the fusion-to-coolant temperature
difference.

The extracted energy is seen to be quite sensitive to
the Biot number and increases markedly as the Biot
number increases at fixed St and Ste. This is consistent
with the larger heat transfer coefficients which are
implied by an increase in the Biot number.

With regard to the results of the short-time solution
as shown in Fig. 12, greater accuracy is attained for
those cases where E is small, i.e. where the frozen layer
is relatively thin.

CONCLUDING REMARKS

In this paper, the solution methodology developed
in [1] has been amplified and adapted to solve for the
freezing which occurs on a coolant-carrying tube that
is situated in a liquid phase-change medium. The axial
temperature rise experienced by the coolant gives rise
to a two-dimensional, transient freezing problem. The
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initial portion of the paper was focused on incorporat-
ing the coolant energy equation and the boundary
conditions at the tube wall, at the moving solid-liquid
interface, and at the adiabatic walls of the containment
vessel into the numerical method of [1]. A small-time
closed-form analytical solution was developed for
starting the numerical computations.

The numerical work was focused on gaseous cool-
ants since they give rise to substantially greater axial
variations than do liquid coolants. Results were ob-
tained for the axial variations of the thickness of the
frozen layer, the wall temperature, and the bulk
temperature, each at a succession of times. In addition,
the energy extracted from the phase-change medium
was determined as a function of time.

The presentation of results was structured to iilu-
minate the effects of the coolant Stanton number, the
Biot number, and the Stefan number of the frozen
material. In general, the results are not very sensitive to
either the Stanton number or the Stefan number but
are quite responsive to changes in the Biot number.
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ETUDE DU GEL BIDIMENSIONNEL A L'EXTERIEUR D'UN TUBE TRANSPORTANT UN
REFRIGERANT

Résumé—La méthode développée dans un article 1] est amplifiée, adaptée et employée pour résoudre le
probléme de convection 4 changement de phase rencontré lorsqu'un réfrigérant circule dans un tube situé
dans un milieu liquide qui change de phase. L’accroissement de la température axiale du réfrigérant a pour
conséquence un probiéme bidimensionnel du gel autour du tube. Dans la premiére partie du texte, on décrit
les procédures pour incorporer I'équation d'énergie du réfrigérant et les diverses conditions limites. Une
solution analytique est obtenue pour démarrer les solutions numériques. L'étude numérique est focalisée sur
un réfrigérant gazeux parce qu'il correspond a une élévation axiale de température veaucoup plus grande
que pour un liquide. Les résultats obtenus concernent I'épaisseur de la couche gelée, la température moyenne
du réfrigérant, la température de la paroi du tube, le nombre de Stanton du réfrigérant, le nombre de Biot et
les nombres de Stefan de la phase solide étant les paramétres. Les résultats ne sont pas trés sensibles aux
nombres de Stanton et de Stefan mais sont influencés par le nombre de Biot.
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UNTERSUCHUNG DES ZWEIDIMENSIONALEN GEFRIERVORGANGS
AN DER AUSSENSEITE EINES VON EINEM KUHLMITTEL
DURCHSTROMTEN ROHRES

Zussammenfassung—Die in der vorausgegangenen Verdffentlichung [1] entwickelte Losungsmethode
wurde erweitert, angepaf3t und dann darauf angewendet, das gekoppelte Konvektions-/Phasendnderungs-
problem zu 16sen, das auftritt, wenn ein KiihImittel durch ein Rohr stromt, welches sich in einem Medium
mit Phasendnderung befindet. Der axiale Temperaturanstieg des Kiithlmittels bewirkt das zweidimensionale
Erstarren um das Rohr. Im ersten Teil der Veréffentlichung wird die Verfahrensweise beschrieben, welche die
Energiegleichung des Kiihimittels mit den unterschiedlichen Randbedingungen in die Losungsmethode
einbringt. Ein geschlossenes analytisches Verfahren wird dann hergeleitet, um mit der eigentlichen
numerischen Losung beginnen zu konnen. Die numerische Rechnung wurde auf gasformige Kaite-
triger konzentriert, weil diese zu viel groBeren Variationen in axialer Richtung fiihren als fliissige
Kaltetrager. Ergebnisse wurden erhalten fiir die Dicke der gefrorenen Schicht, die mittlere Temperatur des
Kaltetrdgers, die Rohrwandtemperatur und die dem erstarrten Medium entzogene Wirme, wobei die
Stanton-Zahl des Kaltetrigers, die Biot-Zahl und die Stephan-Zah! der festen Phase als Parameter
verwendet werden. Die Biot-Zahl beeinflulte die Ergebnisse stark, wihrend sie sich von der Stanton- und
Stephan-Zahl kaum abhéngig zeigten.

JIBYMEPHBIN AHAJIM3 3AMEP3AHUSA XKUAKOCTH HA BHEWHEN MOBEPXHOCTHU
TPYELI MMPU TEUEHUU B HEW XJIAJATEHTA

Annoraums — [IpennoxenHas B npeasiayluei pabore [1] MeTonMka peuleHHs HCNONB3OBaHA B He-
CKOJIbKO U3MEHEHHOM BHJE MJIsi PEIIEHUs CONMPAXEHHON ((ha3oBble H3IMCHEHMsI-KOHBEKIIUA) 3a4a4H, T. €.
JUIS CITydasl TEeYeHHs XJiajareHta B TpyDe, MOMELIEHHOH B XHAKYK CPedy, B KOTODOiH NPOHCXOAST
tda3zoBble H3IMeHeHHS. POCT TeMnepaTyphl XJ1aJareHTa B aKCHAJIbHOM HaNpaB/CHHM BbI3bIBAET 3aMep-
3aHHME KUAKOCTH BOKPYr TpyObl. B nepBoii 4acTH cTaTbH ONHCHIBACTCS METOAHKA MCNOJIb30OBAHHUA
ypaBHEHUs 3HEPIHM VIS XJaJaTeHTa W PA3JIHYHBIX IPaHHYHBLIX YCJIOBHI. 3aTeM U1 Hadvasa 4MCIIEH-
HOTO CYeTA JAETCs BHIBO/ 3aMKHYTOI'O AHAJIMTHYECKOrO pelleHHs. YNCIeHHbIH pacyeT npoBOaHTCS 1S
ra3oBbIX X/14JIAT€HTOB, TaK KaK B 3TOM CJIy4ae MNPOHCXOMMT ropasio Oosiee CHIbHOE H3MEHEHHE
TEMIMEPATYPhl O OCH, YeM NPH TEYEHHH XKHUJKHUX XjagareHToB. IlonyueHbl JaHHBIC O TOJILIMHE €04
3aMepsiled KHAKOCTH, 00BEMHOM TeMnepaType XJ1ajareHTa, TEMNepaTrype CTEHKH TPYObl M BeJIHYHHE
OTOKa Tenya oT AByxda3Hoi cpeabl. B kayecTBe napaMeTpoB HCMOJIb30BaNHCh YUCI0 CTIHTOHA ais
xjajarenTa, yucao Buo u uucio Credana ans tBeproil ¢dasel. B To Bpems kak uucna CTIHTOHA H
CtedaHa MOYTH He BIMAIOT Ha MOJIy4eHHBIE Pe3y/IbTaThl, YHCJIO BHO OKa3bIBaeT BeChMa CYILECTBEHHOE
BJIMSIHHE.
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