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Abstract-The solution methodology developed in the preceding paper has been amplified, adapted, and 
then employed to solve the conjugate phase change<onvection problem which results when a coolant 
passes through a tube situated in a liquid phase-change medium. The axial temperature increase experienced 
by the coolant gives rise to two-dimensional freezing about the tube. In the first part of the paper, the 
procedures used to incorporate the coolant energy equation and the various boundary conditions into the 
solution methodology are described. A closed-form analytical solution is then derived to start the main 
numerical solutions. The numerical work was focused on gaseous coolants because they give rise to much 
larger axial variations than do liquid coolants. Results were obtained for the thickness of the frozen layer, the 
coolant bulk temperature, the tube wall temperature, and the energy extracted from the phase-change 
medium, with the coolant Stanton number, the Biot number, and the solid-phase Stefan numbers as 
parameters. Among the parameters, the results were not very sensitive to the Stanton and Stefan numbers but 

were quite responsive to the Biot number. 

NOMENCLATURE 

Biot number, hr,lk ; 
specific heat ; 
energy extracted from phase-change 
medium ; 
height of containment vessel; 
heat transfer coefficient for coolant flow; 
thermal conductivity; 
Stanton number, h/G@,),; 
Stefan number, cP( T* - T,)/i.; 
radial coordinate; 
radius of tube wall; 
temperature; 
coolant bulk temperature; 
coolant inlet temperature; 
tube wall temperature; 
fusion temperature ; 
time ; 
mean velocity of coolant ; 
axial coordinate. 

Greek symbols 
thermal diffusivity; 
dimensionless frozen layer thickness, 6/r, ; 
frozen layer thickness ; 
transformed coordinate, (r - r,)/6 ; 
dimensionless temperature 
(T-T*)/(T,-T*); 
latent heat of fusion; 
dimensionless coordinate, z/r, ; 
density ; 
independent variable, equation (18); 
dimensionless time (a&,) Ste; 

coolant heat capacity parameter, equation 

(Jb). 

Subscript 

c, properties of coolant; 
no subscript denotes properties of frozen 
material. 

Superscript 

TV at time T ; 
no superscript denotes time (T + 6~). 

INTRODUCTION 

IN THE! immediately preceding paper [l] in this issue of 
the journal, a methodology was set forth for the 
numerical solution of transient two-dimensional dif- 
fusion problems in which one of the boundaries of the 
diffusion region moves as time passes. A special focus 
of the solution method is the accommodation of moving 
boundaries which do not lie along coordinate lines 
(e.g. curved boundaries). The moving boundary is 
immobilized by a coordinate transformation, but the 
transformed coordinates are, in general, not orthog- 
onal. A control volume approach was used as the 
basis for the derivation of the finite-difference equa- 
tions which express energy conservation for the trans- 
formed diffusion region. 

The details of the discretization procedure leading 
to the difference equations are set forth in [l], as is a 
step-by-step prescription of the scheme for solving the 
difference equations. In addition, the discretization of 
an illustrative energy-balance equation at the moving 
interface was also described along with the role played 
by that equation in the solution scheme for the 
diffusion region. The development of the solution 
methodology was carried forward in [l] as far as was 
consistent with a general treatment of the two- 
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FIG. 1. Schematic diagram of freezing on a coolant-carrying 
tube. 

dimensional moving boundary problem. 
This paper has two objectives. The first is to 

illuminate and clarify the methodology of [l] by 
employing it to solve a specific physical problem. In 
this regard, the main issues to be dealt with are the 
integration of specific boundary conditions into the 
solution methodology and the use of a special small- 
time solution to start the main numerical solution. 
Since the specific physical problem to be considered is 
a conjugate problem, involving both heat conduction 
in a freezing region and convective cooling, the 
coupling of the conduction and convection provides a 
key boundary condition. 

The second and, perhaps, the main focus of the 
paper is the solution and presentation of results for a 
physical problem of practical interest. The physical 
situation to be studied is pictured schematically in Fig. 
1. As shown there, a circular tube passes through a 
containment vessel in which there is a liquid phase- 
change medium at its fusion temperature T*. A 
coolant whose inlet temperature is Ti flows through 
the tube. For the condition that Ti < T*, freezing 
occurs on the outside of the tube and, with the passage 
of time, the frozen layer grows thicker, so that Fig. 1 
represents an instantaneous picture of the freezing 
process. The upper and lower boundaries of the 
containment vessel are adiabatic, as indicated in the 
diagram. 

The thickness 6 of the frozen layer pictured in Fig. 1 
is shown to be varying along the length of the tube. A 
primary factor in this variation is the axial temperature 
increase experienced by the coolant as it flows through 
the tube. This temperature rise is the result of heat 
transfer to the coolant due to energy liberated by the 

freezing process and by the subcooling of the solid. 
Other possible contributing factors to the axial thick- 
ness variation are axial heat conduction in the solid 
and heat storage in the coolant. 

The freezing process envisioned here is one in which 
the containment vessel is initially filled with a liquid 
phase-change material at its fusion temperature T*. 
No coolant is flowing, and any coolant fluid situated 
within the tube is also at T*. Then, at time f = 0, the 
coolant flow is initiated and maintained. The entering 
coolant temperature Ti is also maintained at a steady 
value that is less than T*, so that freezing is initiated 
and continues as long as coolant is supplied to the 
tube. 

From the numerical solutions of the problem, 
results have been obtained for several quantities of 
technical interest. These include the timewise evol- 
ution of the distribution of the frozen layer thickness 
along the length of the tube and the axial distributions 
of the fluid bulk and tube wall temperatures, also as a 
function of time. From the standpoint of thermal 
energy storage, the amount of energy transferred from 
the phase-change medium to the coolant during 
various periods of time is relevant information and is 
included among the results presented here. 

Problems related to that described in the foregoing 
paragraphs have been considered in [2] and [3]. In 
both of the cited investigations, various assumptions 
were introduced, with the result that the problems 
actually solved were significantly different (and sim- 
pler) than that considered here. 

ADAPTATION OF THE SOLUTION METHODOLOGY 

As noted in the Introduction, the difference equa- 
tions for the frozen region and the scheme for their 
solution, as set forth in [l], are directly applicable here 
and need not be repeated. The first task that is specific 
to the present analysis is to couple the energy equation 
for the coolant to the heat transfer processes in the 
adjacent frozen material. Subsequent portions of the 
analysis will deal with the moving boundary (i.e. the 
freezing front) and with the adiabatic upper and lower 
boundaries of the containment vessel. 

Coolant energy balance arul associated corwective bound- 
ary condition 

If the subsciipt c is used to identify the thermophysi- 
cal properties of the coolant, then an instantaneous 
energy balance for a control volume of axial length dz 
which spans the cross-section of the tube yields 

h2nr.J T, - Tb) = (PC,), m-i (?T,/?t + tidT,/?z) (1) 

in which T, and T, denote the coolant bulk and wall 
temperatures, respectively, U is the mean velocity of the 
coolant, and h is the heat transfer coefficient for the 
coolant flow. Note that both T, and T, are functions 
both of the axial position z and time t. Equation (1) 
states that the heat passing into the fluid from the tube 
wall may cause both timewise and spatial variations of 

T,. 
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FIG 2. Finite-difference grid adjacent to the coolant-solid 
interface. 

To nondimensionalize equation (I), it is convenient 
to introduce the variables 

5 = r/rw, 0 = (T - T*)/( Ti - 7*), 7 = (at/r:) Ste (2) 

and the dimensionless groups 

St = h/ti(pc,),, Bi = hr,/k, Ste = cp( ‘I’* - T,)/i. 

(34 

0 = [(Pc,),/Pc,~ WP) (3b) 
where the properties without subscripts are those of 
the frozen material. The Stanton number St reflects the 
convective heat transfer capabilities of the coolant 
(without reference to the solid), while the Biot number 
Bi compares the capabilities of the coolant and the 
solid. Both the Stefan number Ste and w are measures 
of heat capacity, Ste for the solid and w for the coolant. 
Care should be exercised not to confuse St and Ste. 

In terms of the new variables, the energy balance (1) 
becomes 

2(8, - (3,) = w(ae,/ar) + (l/st)(ae,/ay). (4) 

At the tube wall (r = rw), in recognition of the fact 
that the convective heat transfer to the coolant is 
supplied by conduction in the frozen material 

h(T, - Tb) = (k~Tlar)sori,+ (5) 

This equation is made dimensionless by introducing 

rl = (r -r,)/6, A = 6/r, (6) 

so that 

Bi(K - 0,) = (llA)(aQl@),ii+ (7) 

Equations (4) and (7) are the differential forms of the 
coolant energy equation and coolant-solid interface 
energy balance. To facilitate their incorporation into 
the numerical solution methodology of [l], finite- 
difference forms will now be derived. For this purpose, 
the finite-difference grid adjacent to the coolant-solid 

interface (i.e. the tube wall) is shown in Fig. 2. If 
attention is focused on the P control volume for the 
coolant and on the adjacent solid-phase control 
volume, and if (%/&I),,, is discretized as (0, - 0,)/~,, 
then equation (7) can be rephrased as 

8, - ebP = (e, - e,,y(i + qEBiA). (8) 
Equation (4) is then applied to the P control volume 

for the coolant, and (0, - ebP) is eliminated by employ- 
ing equation (8). The resulting equation is then 
integrated along r from the upstream face to the 
downstream face of the control volume, with @,/ar 
being regarded as spatially uniform within the control 
volume. The respective values of or, at 5, and t2 are 
obtained by noting that the fluid enters the P control 
volume with a bulk temperature f&s and leaves with a 
bulk temperature 8,,. 

The timewise discretization is fully implicit, with 
@@,/~t), being discretimd as (f$,- Q&r. All other 
time-dependent quantities appearing in the integrated 
form of equation (4) are evaluated at time (7+67). 

Furthermore, in keeping with the practice employed in 
[l], quantities corresponding to time (7 +dt) are 
without superscripts while those for time 7 are 
identified with a superscript. 

When the operations described in the preceding two 
paragraphs are carried out, there results 

where 

adbp = a,tI,,+a,B,+B (9) 

as = l/2&, aE = St/( 1 + qEBiA), B = o6@;,/2Sr 

(104 

ap = a, + aE + c&~/2& (lob) 

and St = <r -<r. Equation (9) is the finite-difference 
equation from which the temporal and spatial distri- 
bution of the coolant bulk temperature is to be 
determined. It also serves to link the temperature field 
in the coolant to that in the adjacent frozen material. 
Note that the solid-phase grid-point temperature eE 
appears in equation (9), but not 8, (which is not a grid 
point). 

Equation (9) is readily incorporated into the finite- 
difference scheme for the frozen region as set forth in 
[l]. That scheme, which dealt with an arbitrary 
control volume within the frozen material, is easily 
adapted to the boundary control volume which, as 
pictured in Fig. 2, surrounds the grid point E (tempera- 
ture e,). 

In this regard, it may be noted that the left-hand face 
of the boundary control volume is stationary, and its 
transformed radial coordinate is 9 = 0. Furthermore, 
on that face, the quanties /I, x and R, defined by 
equations (10) and (13) of [l], are equal to zero, one, 
and one, respectively, so that R = - (l/A) (H/all) and 
A = 0 from equations (24) and (25) of [l]. Then, by 
taking note of equation (7) of this paper, Q can be set 
equal to Bi(&.- e,), and with equaticn (8) 

n = Bi(ebP - e,y(i + tfEBiA). (11) 
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If attention is then turned to equation (27) of [l], 
which represents the fully implicit discretized form of 

the energy balance for a control volume in the frozen 
material, the following modifications are made for the 
boundary control volume. First, the subscript P is 

changed to E for consistency with the notation of the 

preceding paragraphs. Then,!&, is set equal to the Q of 
equation (11) and As3 is set equal to zero. These 

modifications are all that is necessary to adapt the 
formulation of [l] to the column of solid-phase control 

volumes that are situated adjacent to the coolant- 
carrying tube. 

With this, the coolant energy equation and the 
convection condition at the inner boundary of the 
solidified region can now be regarded as having been 
incorporated into the numerical scheme of [l]. 

Freezing front and adiabatic boundaries 
From the problem statement set forth in the In- 

troduction and illustrated in Fig. 1, it is seen that the 

temperature of the liquid phase-change medium is 
uniform and equal to the fusion temperature T*. 
Therefore, for these conditions, buoyancy forces are 

absent, and there is no natural convection in the liquid. 
This fact can be employed to modify the moving- 
boundary energy balance that was described in [l]. In 

particular, the last term on the respective right-hand 

sides of equations (30)-(32) is deleted. If account is 

taken of this modification of equation (32), the discre- 
tized computational equation for determining the 
dimensionless frozen layer thickness A(<, r), equation 
(33) of [l], remains unchanged. Furthermore, the 
description of the solution methodology for A, which 

follows equation (33), is also applicable without 
modification. 

It is also relevant to briefly discuss the column of 
solid-phase control volumes that is positioned im- 

mediately adjacent to the freezing front. For concrete- 
ness, attention may be focused on a typical control 

volume among these, for instance, one which sur- 
rounds a point P. The right-hand face of such a control 
volume is the freezing front, where u = 1 and 0=0. 
Correspondingly, from equations (24) and (25) of [ 11, 
R = -R(x/A) (dH/Sq) and A = 0. The derivative 
(aQ/av) was discretized as (0 - oP)/( 1 - a,,). Since the 
right-hand face was identified as Sl in [I] 

Qs, = &IA)@d(l - VP), As, = 0. (12) 

The Qsl and As1 from equation (12) may be 
introduced into the discretized control volume energy 
equation, equation (27) of [ 11. These modifications are 
all that are required to specialize (27) to the column of 
control volumes adjacent to the freezing front. 

The upper and lower bounding surfaces of the 
containment vessel are specified as being adiabatic (see 
Fig. l), that is, i3T/13z = 0. If use is made of the 
transformation of d/dz into the 5, q coordinates 
(equation (8) of [l]), the adiabatic condition becomes 

sQ/sg = (~iA)(~Aia<)(%/+), C: = 0, H/r,,. (13) 

Since the freezing front is an isotherm (T = T* = 
constant) and since both the 5 = 0 and < = H/r, 
surfaces are adiabatic, it follows that 

;A/(;( = 0, 5 = 0, H/r, (14) 

since adiabatic and isothermal surfaces are perpendi- 

cular. From equations (13) and (14), the adiabatic 
condition reduces to 

N/a< = 0, 5 = 0, H/r,. (15) 

Equation (15), in conjunction with equation (25) of 
[l], yields I- = 0 at 5 = 0 and 5 = H/r,,,. With this, the 
discretized control volume energy balance, equation 

(27) of [l], is readily adapted to the control volumes 
adjacent to the upper and lower surfaces of the 
containment vessel. 

In addition to its role in simplifying the adiabatic 

boundary condition, equation (14) also serves to 
provide end conditions for the spline fits of A(((5) that 
are employed in the numerical scheme [ 11. 

At this point, all of the adaptations of the solution 

methodology of [ l] to the present problem have been 
completed. Attention will now be turned to special 

procedures needed to start the numerical solution. 

SMALL-TIME STARTlNG SOLUTIOIL 

In transient problems which are initiated by a rapid 

change in a boundary condition, as in the present 
instance, it is extremely difficult to get accurate short- 

time solutions. In addition, the grid deployment that 
is appropriate at small times may be quite different 
from that which is optimal at larger times. For these 
and other reasons, it is highly desirable, if possible, to 

utilize an alternative solution at short times, and to 
initiate the full-blown numerical solution subsequent 
to the period of most rapid change, using the alter- 

native solution as the source of the starting values. 
For the present problem, it is possible to obtain a 

closed-form analytical solution which can serve as a 
small-time solution. At small times, the thickness of the 

frozen layer is small compared with the tube radius, so 
that the layer can be regarded as plane. Furthermore, 
both the sensible heat storage and the axial conduction 
in the frozen layer are negligible. Under these con- 
ditions, the radial temperature distribution in the 
frozen layer is linear, with a slope 

(7T/& = (T* - T,)/& (16) 

Furthermore, for the aforementioned model 

h(T,- Tb) = k(dT/&) = p/.(?h/?t). (17) 

Equations (16) and (17), together with the coolant 
energy balance, equation (I), constitute the governing 
equations for the small-time solution. These are sup- 
plemented by the initial condition, T = T*, and the 
coolant inlet condition, T = T,. 

The mathematical operations involved in the attain- 
ment of the closed-form solution for the just-described 
problem are similar to those set forth in [4] for freezing 
adjacent to a plane wall cooled by an internal forced 
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convection flow. Since the solution procedure is avail- 
able in [4], it will not be described here. Rather, only 
the final results for the three quantities of main interest, 
A, &, and 8,, will be given. 

For a compact presentation, it is convenient to 
define a new independent variable cr 

u = 5 - (wSt)c: 2 0 (18) 

so that o and 5 are the independent variables on which 
A, f& and 8, depend. Then, the solution gives 

A+(lnA)/Bi= -(2stjBi)r+A,4(InA,)/Bi (19) 

where 

A,, = -(1/Bi)+[(1/Bi)2+2~]‘~2. (20) 

The procedure for the evaluation of A is first to select z 
and 5, and then to calculate G from equation (18). With 
0 as input, A, is computed from equation (20). Then, 
with A, and the selected value of 5, A is determined 
from equation (19). Once A0 and A have been found, 8, 
and 8, follow from 

0, = A[1 + (l/SiA,)] [(l/E)’ -+ 2~l-l’~ (21) 

0, = &‘[l + (l,‘SiA)]. (22) 

In employing the short-time solution, equations 
(18)-(22), to provide starting values for the full-blown 
numerical solution, care was taken to ensure that it was 
applied for times for which it is actually valid. To verify 
the proper use of the short-time solution, the A values 
from the short-time and numerical solutions were 
compared at all times subsequent to the initiation of 
the latter. If the two solutions were in agreement to 
within 0.1% for times up to twice the starting time of 
the numerical solution, it was judged that the small- 
time solution had been evaluated within its range of 
validity in providing the starting values for the numeri- 
cal computations. 

RESULTS AND DISCUSSION 

Parameter and grid considerations 
From an examination of the governing equations, it 

can be seen that there are four dimensionless para- 
meters whose values have to be specified prior to the 
initiation of the numerical solutions. These include the 
Stanton number St, the Biot number Bi, the Stefan 
number Sre, and the coolant heat capacity parameter 
co. What with so many parameters and also taking 
cognizance of the fact that the computations are quite 
time consuming, care must be taken in selecting the 
cases to be studied. In addition, for each case, there is a 
considerable amount of information to be presented, 
encompassing the timewise variation of the heat 
extracted from the phase-change medium and the time 
and space variations of the frozen layer thickness, the 
coolant bulk temperature, and the tube wall tempera- 
ture. Thus, journal space limitations restrict the num- 
ber of cases for which results can be presented. 

Another factor in the selection of the cases to be 

computed is the desire to use the methodology and 
solution scheme for problems which merit such power- 
ful tools-for problems which are truly two- 
dimensional (i.e. significant variations of A, & and 0, 
with <). The illustrative cases solved in [4] de- 
monstrated that the f variations were much larger 
when the coolant is a turbulent gas flow than when it is 
a turbulent liquid flow (indeed, the liquid flows gave 
results that were nearly independent of 5). Con- 
sequently, attention will be focused here on parameter 
values that are reflective of turbulent gas flows, 

For gas flows, intuition suggests that the heat 
capacity will play a negligible role, i.e. the w parameter 
is sufficiently small so as not to affect the results. This 
expectation was verified by the numerical results of 
[4]. Therefore, for the present computations, w will be 
set equal to zero. The values selected for the other 
parameters will become evident during the graphical 
presentation of results. 

The computations were performed with 1400 grid 
points arranged in a 140 x 10 pattern, respectively in 
the r and q coordinate directions. Only ten points were 
needed in the q direction because the Q versus q 
profiles, which are nearly linear, are very well accom- 
modated by a central difference discretization over a 
uniformly deployed set ofgrid points, as was the case in 
the present problem. A relatively large number of grid 
points in the 4 direction was required because of the 
large span of the < coordinate (i.e. H/r, is several 
hundred times larger than 6/r,). With regard to the 
time variable t, it is open ended since the freezing can 
continue indefinitely. The computations were carried 
through for r values up to 0.4 using about 500 time 
steps, which gave a layer of thickness 6 -0.6r, at the 
termination of the computations. 

Frozen layer thickness. 
Representative results for the thickness of the frozen 

layer are shown in Fig. 3. In the figure, the thickness is 
plotted as a function of the axial coordinate at a 
succession of times. The solid lines portray the results 
from the numerical sofutions, while the dashed lines 
are for the small-time solution. The latter has, in fact, 
been extended to large times in order to examine how 
well it performs outside its primary range cf 
applicability. 

The figure shows that the thickness of the frozen 
layer decreases in the axial direction. This behavior is 
directly attributable to the temperature rise of the 
coolant as it passes along the length of the tube. The 
higher downstream temperatures make for a smaller 
fusion-to-coolant temperature difference, which re- 
sults in reduced heat transfer across the frozen layer 
and a correspondingly reduced rate of freezing. 

While the changes in layer thickness between the 
inlet and exit cross sections are not insignificant, the 
actual slope of the solid-liquid interface is very 
small-l/100 of that shown in the figure. This obser- 
vation suggests that axial variations are very small 
compared with radial variations, so that axial con- 
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FIG. 3. Representative results for the thickness of the frozen layer 

duction is, in all likelihood, negligible compared with 
radial conduction. When axial conduction is negli- 
gible, the solution at any station z/r, is not affected by 
events at downstream stations and by the height H of 
the containment vessel. It is for this reason that little 
was said heretofore about the specification of the 
dimensionless height H/r, of the containment vessel. 
For the calculations, H/r, was taken to be 100. 
However, it is believed that the results are applicable 

St 30.003, Bi=5 

for any H/r,. 
As expected, the thickness of the layer grows 

continuously with time. In addition, the slope of the 
solid-liquid interface is larger at larger times. 

The numerical and small-time solutions merge at 
small values of time. On the other hand, the deviations 
between the two sets of results increase as the layer 
grows thicker, with the small-time solution yielding a 
greater layer thickness. By examining the results for 
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F,(;, 4, Effect of Stefan number OD the thickness of the frozen layer. 
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FIG. 5. Effect of Stanton number on the thickness of the frozen layer. 

other cases in addition to those of Fig. 3, it may be 
concluded that the errors in the small-time solution are 
keyed to the magnitude of the layer thickness and are 
little affected by the assigned values of the parameters. 

As a final observation with regard to Fig. 3, it may be 
noted that the zero slope condition at z = 0 and z = H 
is not well represented. This is because this condition is 
actually in force only at the two end points, whereas 
near these points the slope is not zero. The scale of the 
figure is such that the region of zero slope is too small 
to be portrayed. 

The results of Fig. 3 were for small values of the 
Stefan number, i.e. Ste = 0. The effect of the Stefan 
number is explored in Fig. 4, where curves of frozen 
layer thickness are plotted for Ste = 0 and Sre = 1 for 
the same Stanton number and Biot number values as 
in Fig. 3. From this figure, it is seen that all of the 
qualitative trends that were identified for Sre=O are 
also applicable for Ste = 1. Indeed, the two sets of 
curves are very nearly parallel, with those for Ste = 0 
lying above those for Ste = 1. This arrangement is 
altogether reasonable, since higher Ste denotes in- 
creasing liberation of sensible heat from the solid, 
which brings about a greater rise of coolant tempera- 
ture and a decrease in the fusion-to-coolant tempera- 
ture difference. 

The effect of Stefan number is modest, as witnessed 
by the fact that the curves for Sre = 0 lie only about 
11% above those for Sre = 1. Furthermore, Ste = 1 is 
actually a large value when viewed from the appli- 
cations standpoint. In view of this, the subsequent 
graphs in this series will be characterized by a fixed 
value of Ste = 0. 

The effect of the Stanton number Sr is illustrated in 

Fig. 5. The Biot number is the same as in the preceding 
figures, and Ste = 0. As it enters the present analysis, 
the magnitude of the Stanton number controls the 
axial temperature rise of the coolant fIuid. Since 
smaller values of ti(pc,), promote larger rises in coolant 
temperature, it follows from equation (3) that larger St 
should yield larger downstream coolant temperatures 
and smaller values of the fusion-to-coolant tempera- 
ture difference. Therefore, it can be expected that the 
decrease of6 with z will be greater at larger values of St. 
This expectation is verified by Fig. 5, where the slopes 
of the 6 vs z curves for St = 0.005 are greater than those 
for the St = 0.003 curves. 

The differences in the slopes are, however, rather 
modest. In addition, it should be noted that the range 
of St that is employed in the figure is quite large. In this 
regard, it may be recalled that a well-accepted cor- 
relation for turbulent pipe flows indicates that St - 
Rem’.‘. Thus, a very large variation of Reynolds 
number would be required to span between the two St 
values employed in the figure. The Stanton number is 
more sensitive to variations in the Prandtl number 
than to variations in the Reynolds number. However, 
for gases, the Prandtl number is confined to a narrow 
range. There are substantial variations among the 
Prandtl numbers of candidate liquid coolants, but the 
corresponding Bi values are quite different from those 
of Fig. 5, so that the results of the figure do not apply to 
liquids. 

Attention will now be turned to the effect of the Biot 
number, and Fig. 6 has been prepared in this con- 
nection. The Biot number can be regarded as a 
measure of the convective heat transfer coefficient for 
the coolant flow (for a fixed conductivity of the frozen 
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materja1~. A large Biot num~r eRcourages heat trans- 
fer from the solid to the coolant and promotes a high 
rate of freezing, while a low 18iot number has the 
o~~os~re effect. These assertions are corroborated by 
the results of Fig. 6, where a substantial response of6 to 
Bi is in evidence (up to about a factor of two). On a 
~e~en~~e basis, 6 is more responsive to Bi pt small 
times than at large times. Tfiis is because at small times, 
the frozen layer is thin and the ccmvective heat transfer 
co~~cie~t drays a larger role in determ~~~~g the overall 
thermal resistance than it does at larger times, when 
the layer is thicker and more resistant, 

~0Q~a~c hf& and waif te~~era~~r~s 
Axial distributions of the coolant bulk and tube wall 

tem~atuf~ at a succession of times are pr~enred in 
Figs. f-10. With regard to parameter s~ec~~c3t~oo~ 
Fig. 7 is the counterpart of Fig. 3, Fig. 8 is the 
counterpart of Fig. CI, etc. Each figure cottons two 
pan&, with the results for the wafl and bulk tempers- 
tures fes~ctive~~ presented in the left-hod and right- 
hand panels. The temperatures are plotted in dimen- 
sionless form, {T, - T*)j(r, - -P) for the wall sem- 
perature and fT, - T*)j(T{ - T*] for the bulk 
tem~e~ture. 

Attention wilf first be turned to Fig. 7 with a view to 
~dent~fy~~g the treads of the temperature v~iat~o~ 
with respect fir axial position and time. IsI the right- 
hand panel of the figure, where the bulk tem~erat~re 
results are plotted, all curves originate at an ordinate of 
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FIG. 10. Effect of 5iot number on the coolant bulk and tube wali temperatures. 
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unity and slope downward to the right. This behavior is 

consistent with an entering bulk temperature equal to 
Ti (constant for all times) and an increase of the bulk 

temperature along the length of the tube. The reason 

for the drop-off of the curves as the bulk temperature 
increases is the decrease of the fusion-to-bulk tempera- 
ture difference which appears in the numerator of the 

ordinate variable. 
At any fixed time, the change in the bulk tempera- 

ture between inlet and outlet is proportional to the rate 

at which heat flows from the tube wall into the coolant 

(the fluid heat capacity is negligible for gases). From 
the right-hand panel of Fig. 7, it is seen that the tube- 

to-fluid heat transfer rate is largest at small times and 

decreases as time increases. Also, at any fixed time, the 
greater slope of the bulk temperature curve at small z 
indicates higher heat transfer rates in that region. 

The dimensionless wall temperature distributions 

(left-hand panel) lie well below the corresponding 
dimensionless bulk temperature distributions, es- 

pecially at small times. This means that (T* - T,) < 
(7’* - Tb) or that T, > T,, as is necessary since T* > 

Ti. The decreasing spread between corresponding T, 
and T, curves that occurs as time increases is due to the 

decreased rate of heat transfer that accompanies the 
thickening of the frozen layer. The wall temperature 
distributions, in common with the bulk temperature 

distributions, slope downward to the right, indicating 

that the wall temperature increases along the length of 

the tube. 

Figure 7 contains results from both the numerical 
solution and the short-time model. The two sets of 
results merge at small times but deviate at larger times. 

In particular, the short-time solution underestimates 
the heat transfer rate to an extent which grows larger 
with time; in addition, the wall temperatures predicted 

by the small-time model tend to be low. 
The effect of Stefan number on the wall and bulk 

temperature distributions is illustrated in Fig. 8, where 
results for Srr = 0 and Ste = 1 are plotted. All of the 
qualitative trends already enumerated for Ste = 0 
carry over for Ste = 1. Since the dimensionless bulk 
temperature curves for Ste = 1 lie below those for Ste 
= 0, the heat transfer rates for the former are greater 
than those for the latter, with the deviations increasing 
with time. The higher transfer rates for Ste = 1 may be 
attributed to the energy liberated by the subcooling of 

the solidified material, which supplements the energy 
liberated by the freezing process. 

Examination of the left-hand panel of Fig. 8 shows 
that the fusion-to-wall temperature differences for Ste 
= 1 are smaller than those for Ste = 0, which means 
that the wall temperatures are higher for the former 
than for the latter. This finding is consistent with the 
fact that the thickness of the frozen layer is smaller for 
Ste = 1 than for Ste = 0 (Fig. 4). 

Figure 9 illustrates the effects of the Stanton number 
on the heat transfer. As noted earlier, the major role of 
the Stanton number in the present problem is to 
control the extent of the bulk temperature rise along 

the length of the tube. From the right-hand diagram of 

the figure, the response of the bulk temperature to the 
Stanton number is strongly in evidence, especially at 

small values of time. It is seen that the higher the 
Stanton number, the greater is the bulk temperature 

rise. However, this does not necessarily mean that the 
wall-to-fluid heat transfer rate is greater at higher 

Stanton numbers. In this regard, it may be noted that 

the heat transfer rate is proportional to the product of 
the coolant mass flow and the bulk temperature rise. 

Since an increase in Stanton number may be caused by 

a diminished coolant flow, the heat transfer rates may 

actually decrease with increasing Stanton number. 
The wall temperature distributions (left-hand panel 

of Fig. 9) display Stanton-number-related trends that 
are similar to those for the bulk temperature. As the 
Stanton number increases, greater increases in the wall 
temperature along the length of the tube are in 
evidence. Note that at any given time, the wall 
temperature at z = 0 is independent of the Stanton 
number when the Biot number is fixed. This is because 

the inlet bulk temperature is fixed at Ti and the Biot 
number controls the wall-to-bulk temperature differ- 

ence at each instance of time. 
The Biot-number-related effects on the temperature 

distributions are displayed in Fig. 10. Larger values of 
Biot number promote higher rates of heat transfer so 

that, at first thought, it might be expected that the 

bulk temperature curves for Bi = 5 would show a 

larger axial variation than those for Bi = 2. As 

indicated in the right-hand panel of Fig. 10, the 
opposite relationship prevails. The reason for this 
behavior is that the higher values of Bi imply a larger 

convective heat transfer coefficient which, in turn, 
implies a higher coolant velocity. It is this higher 

coolant velocity which is responsible for the smaller 
axial bulk temperature changes for Bi = 5 relative to 

those for Bi = 2. 

Another effect of increasing Biot number is to 
decrease the wall-to-bulk temperature difference, with 
a corresponding increase in the difference between the 
fusion and wall temperatures. This expectation is 
corroborated by the results shown in the left-hand 
panel of Fig. 10, where the curves for Bi = 5 are seen to 
lie substantially above those for Bi = 2. 

Energy extracted 
With regard to thermal storage applications, the 

amount of energy E extracted from the phase-change 
medium during the time interval from t = 0 to t = t is 
of practical relevance. The dimensionless group 
E/pi.rz was evaluated from the numerical solutions 
and is plotted as a function of the dimensionless time 
variable 7 in Figs. 11 and 12. In addition, the same 
group was evaluated from the small-time model for 
those cases where Ste = 0 (recall that sensible heat 
effects in the frozen layer are not accounted in the 
model). In computing E for the small-time model, the 
temperature gradient given by equation (16) was 
multiplied by the element of tube surface 2m,dz. 
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FIG. 11. 

St =0.003, Bi=5 500- ./ 

Ste = 0 
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Effect of Stefan number on the energy extracted from the phase-change medium. 

integrated from z = 0 to z = H, and then integrated 
over time from t = 0 to t = t. 

The energy-extraction curves in both figures show a 
common dependence on time. As expected, the 
amount of energy extracted increases with time, but at 
a lesser rate as time advances. Thus, the instantaneous 
incremental contributions to the extracted energy 
diminish with time. 

Figure 11 displays the effects of Stefan number on 
the extracted energy. The solid line in the figure 
represents the results for Ste = 0 as determined from 
the numerical solution. This is to be compared with the 
uppermost dotdashed curve (that labelled ‘total’) 
which represents the results for Ste = 1. The com- 

parison shows that the extracted energy is greater at 
higher Stefan numbers. However, taking account of 
the fact that Ste = 1 is a relatively large Stefan number 
and that the maximum deviation between the Ste = 0 
and Ste = 1 curves is about 9%, the Stefan number 
effect is not a major factor. 

It is interesting to explore the manner in which the 
Stefan number effect is manifested. For this purpose, 
the latent heat and sensible heat contributions to the 
extracted energy for Ste = 1 are plotted as dot-dashed 
lines in Fig. 11. If account is taken of the fact that the 
curve for Ste = 0 represents latent heat alone (there is 
no contribution of sensible heat for Ste = 0), it can be 
seen that the accounting of sensible heat effects, as 

t 

- - - SMALL-TIME 
MODEL 

400 

i 

Ste q 0 

300 

FIG 12. Effect ofStanton number and Biot number on the energy extracted from the phase-change medium. 
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occurs automatically for Ste > 0, actually decreases 
the latent heat contribution. This decrease is more 
than compensated by the sensible heat contribution, so 

that the net extracted energy increases modestly with 

the Stefan number. 
For Ste = 0, the short-time model predicts results 

that are somewhat low compared with those of the 
numerical solution. The deviations increase with time, 
as is consistent with the timewise growth of the frozen 
layer and the corresponding lessening validity of the 

small-time model. At r = 0.4 (the largest 7 value of the 
figure), the predictions of the small-time model are 
about ten percent below those of the numerical 
solution. 

The effects of Stanton number and Biot number 
on the extracted energy are displayed in Fig. 12. The 

figure shows that there is a modest decrease in the 
extracted energy as the Stanton number increases at 
fixed values of Bi and Ste. This decrease may be 

attributed to the greater bulk temperature rises that 
are brought about by decreases of coolant mass flow 

(denominator of the Stanton number) and the con- 
sequent decrease of the fusion-to-coolant temperature 

difference. 

The extracted energy is seen to be quite sensitive to 
the Biot number and increases markedly as the Biot 

number increases at fixed St and Ste. This is consistent 
with the larger heat transfer coefficients which are 
implied by an increase in the Biot number. 

With regard to the results of the short-time solution 
as shown in Fig. 12, greater accuracy is attained for 
those cases where E is small, i.e. where the frozen layer 

is relatively thin. 

CONCLUDING REMARKS 

In this paper, the solution methodology developed 

in [l] has been amplified and adapted to solve for the 
freezing which occurs on a coolant-carrying tube that 
is situated in a liquid phase-change medium. The axial 
temperature rise experienced by the coolant gives rise 
to a two-dimensional, transient freezing problem. The 

initial portion of the paper was focused on incorporat- 
ing the coolant energy equation and the boundary 
conditions at the tube wall, at the moving solid- liquid 
interface, and at the adiabatic walls of the containment 

vessel into the numerical method of [l]. A small-time 

closed-form analytical solution was developed for 
starting the numerical computations. 

The numerical work was focused on gaseous cool- 

ants since they give rise to substantially greater axial 

variations than do liquid coolants. Results were ob- 

tained for the axial variations of the thickness of the 

frozen layer. the wall temperature, and the bulk 
temperature, each at a succession of times. In addition, 

the energy extracted from the phase-change medium 
was determined as a function of time. 

The presentation of results was structured to illu- 

minate the effects of the coolant Stanton number, the 

Biot number, and the Stefan number of the frozen 
material. In general, the results are not very sensitive to 

either the Stanton number or the Stefan number but 
are quite responsive to changes in the Biot number. 
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ETUDE DU GEL BIDIMENSIONNEL A L’EXTERIEUR DUN TUBE TRANSPORTANT UN 
REFRIGERANT 

R&ml-La methode developpee dans un article [l] est amplihee, adaptte et employee pour resoudre le 
probleme de convection a changement de phase rencontre lorsqu’un refrigerant circule dans un tube sit& 
dans un milieu liquide qui change de phase. L’accroissement de la temperature axiale du refrigerant a pour 
consequence un probleme bidimensionnel du gel amour du tube. Dans la premiere partie du texte, on decrit 
les procedures pour incorporer I’equation d’energie du refrigerant et les diverses conditions limites. Une 
solution analytique est obtenue pour dtmarrer les solutions numeriques. L’etude numerique est focalisee sur 
un refrigerant gazeux parce qu’il correspond a une elevation axiale de temperature veaucoup plus grande 
que pour un liquide. Les r&hats obtenus concernent l’epaisseur de la couche gelee, la temperature moyenne 
du refrigerant, la temperature de la paroi du tube, le nombre de Stanton du refrigerant, le nombre de Biot et 
les nombres de Stefan de la phase solide &ant les paramttres. Les resultats ne sont pas tres sensibies aux 

nombres de Stanton et de Stefan mais sont influences par le nombre de Biot. 
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UNTERSUCHUNG DES ZWEIDIMENSIONALEN GEFRIERVORGANGS 
AN DER AUSSENSEITE EINES VON EINEM KUHLMITTEL 

DURCHSTRGMTEN ROHRES 

Zussammenfassung-Die in der vorausgegangenen Veroffentlichung [l] entwickelte Ldsungsmethode 
wurde erweitert, angepagt und dann darauf angewendet, das gekoppelte Konvektions-/PhasenHnderungs- 
problem zu l&en, das auftritt, wenn ein Kiihlmittel durch ein Rohr stromt, welches sich in einem Medium 
mit Phasenanderung befindet. Der axiale Temperaturanstieg des Kiihlmittels bewirkt das zweidimensionale 
Erstarren urn das Rohr. Im ersten Teil der Veriiffentlichung wird die Verfahrensweise beschrieben, welche die 
Energiegleichung des Kiihlmittels mit den unterschiedlichen Randbedingungen in die Losungsmethode 
einbringt. Ein geschlossenes analytisches Verfahren wird dann hergeleitet, urn mit der eigentlichen 
numerischen Losung beginnen zu konnen. Die numerische Rechnung wurde auf gasformige Kalte- 
trager konzentriert, weil diese zu vie1 griSeren Variationen in axialer Richtung fuhren als fliissige 

Kaltetrager. Ergebnisse wurden erhalten fur die Dicke der gefrorenen Schicht, die mittlere Temperatur des 
Kaltetragers, die Rohrwandtemperatur und die dem erstarrten Medium entzogene WGme, wobei die 
Stanton-Zahl des Kaltetragers, die Biot-Zahl und die Stephan-Zahl der festen Phase als Parameter 
verwendet werden. Die Biot-Zahl beeinflul3te die Ergebnisse stark, wahrend sie sich von der Stanton- und 

Stephan-Zahl kaum abhingig zeigten. 

ABYMEPHbII? AHAJlM3 3AMEP3AHMII ‘HCMAKOCTM HA BHEIBHEH HOBEPXHOCTM 
TPY6bI HPH TEYEHMM B HER XJIAAAI-EHTA 

hHoTauHn - Hpennowteuuas a npenbmymeii pa6oTe [I] Meronaza pememis licnonb3oBaHa B He- 

CKOnbKO I13MeHeHHOM BHne .&"a pellIeH&Ul COEIpaEeHHOfi (@a30BbIe H3MeHeHHR-KOHBeKuBI) 3aJ,a’IH, T. e. 

ann cnyqaa Teqemia xnanareHTa B -rpy6e, noMememtoi% a xHn~yr0 cpeny, B KOTOPOA npoucxonnT 

N$aJOBbIc I(3MeHeHHII. POCT TeMnepaTypbI XnaAareHTa B aKCUanbHOM HaupaBneHHN BbI3bIBaeT 3aMep- 

3aHIIe XHLlKOCTH BO~pyr Tpy6bI. B IIepBOa ‘iaCT1( CTaTbA OmiCbIBaeTCI MeTOnHKa HCuOJIb3OBaHWR 

ypaenenan 3HeprHH nna XnaflareHTa I( pa3neqHbIx rpaHnrHbIx ycnoasi?. 3aTeM ana Havana qHcneH- 

HOrO ‘YeTa LlaeTCR BbIBOA 3aMKHyTOr0 aHanl(TUSeCKOr0 pL%IeHHK. %iCJIeHHbIfi paC’leT IIpOBOnHTCR L,JIS 

ra3oBbIx xnaaareeToa, TaK KaK B 3~0~ cnysae npoecxonw~ ropasno 6onee cHnbHoe U3MeHeHBe 

TeMnepaTypbI no OCA. qeM npu TeqeHm4 EW~KMX xnanareHToB. nonyreubl naHubIe 0 Tonuuitie cnon 

3aMep3me8 XBLIKOCTH, 06beMHofi TeMnepaType xnanareHTa, TeMnepaType cTeHKB Tpy6bI II Benwimie 

IlOTOKa TUIJIa OT flBYX@3HOi? CpnbI. B KaYeCTBe IIapaMeTpOB RCuOnb30BanEiCb ‘IBCnO CT3HTOHa .4JIR 

xnanareHTa, wcno 6ao u qucno C-rei$ana flnn raepnon @asbl. B ro apeMa Kak qacna Cr3uroiia u 
CTe@aHi., nOYTI( He B,IHIIIOT Ha nO,Iy’,eHHbIe !,C3y,IbTaTbI, 9AC.“O 6RO OKa3bIBaCT BCCbMa CyIL,CCTBCHHOC 

BnAIIHlle. 


